Sign in →

Test Code GLUCAGON Glucagon, Plasma

Additional Codes

GLP

Reporting Name

Glucagon, P

Useful For

Diagnosis and follow-up of glucagonomas and other glucagon-producing tumors

 

Assessing diabetic patients with problematic hyper- or hypoglycemic episodes (extremely limited utility)

Specimen Type

Plasma EDTA


Specimen Required


Patient Preparation: Patient should fast for 8 hours before specimen collection.

Supplies: Sarstedt Aliquot Tube, 5 mL (T914)

Collection Container/Tube: Lavender top (EDTA)

Submission Container/Tube: Plastic vial

Specimen Volume: 2 mL

Collection Instructions:

1. Pre-chill lavender top (EDTA) tube at 4° C before drawing the specimen.

2. Draw blood into the pre-chilled tube and process as follows:

 a. Chill filled tube in wet ice for 10 minutes.

 b. Centrifuge in a refrigerated centrifuge or in a pre-chilled centrifuge carrier.

 c. Immediately after centrifugation, aliquot plasma into a plastic vial and freeze.


Specimen Minimum Volume

0.45 mL

Specimen Stability Information

Specimen Type Temperature Time
Plasma EDTA Frozen 90 days

Reference Values

≥1 year of age: ≤159 pg/mL

<1 year of age: No reference interval established.

 

For International System of Units (SI) for Reference Values, see www.mayocliniclabs.com/order-tests/si-unit-conversion.html.

CPT Code Information

82943

LOINC Code Information

Test ID Test Order Name Order LOINC Value
GLP Glucagon, P 2338-2

 

Result ID Test Result Name Result LOINC Value
9358 Glucagon, P 2338-2

Clinical Information

Glucagon is a single-chain polypeptide of 29 amino acids that is derived from a larger precursor peptide (big plasma glucagon), which is cleaved upon secretion. The main sites of glucagon production are the hypothalamus and pancreatic alpha-islet cells. The function of hypothalamic glucagon is incompletely understood and currently no clinical disorders of hypothalamic glucagon function have been defined. Pancreatic islet glucagon is secreted in response to hypoglycemia, with resultant increases in blood glucose concentration. Glucagon's hyperglycemic effect is produced by stimulating hepatic glycogenolysis and gluconeogenesis; it has no effect on muscle glycogen. Once blood glucose levels have normalized, glucagon secretion ceases.

 

Excessive glucagon secretion can lead to hyperglycemia. Excessive and inappropriate glucagon secretion can sometimes be observed in diabetes, particularly during ketoacidosis, and can complicate management of the disorder. In rare cases, it also can occur in tumors of the pancreatic islets (glucagonoma), hepatocellular carcinomas, carcinoid tumors, and other neuroendocrine neoplasms. Patients with glucagon-secreting tumors may present with classic glucagonoma syndrome, consisting of necrolytic migratory erythema, diabetes, and diarrhea, but can also have more subtle symptoms and signs.

 

Decreased or absent glucagon response to hypoglycemia can be seen in type I diabetes (insulin-dependent diabetes) and can contribute to severe and prolonged hypoglycemic responses.

 

Glucagon is routinely measured along with serum glucose, insulin, and C-peptide levels during the mixed-meal test employed in the diagnostic workup of suspected postprandial hypoglycemia. However, it plays only a minor role in the interpretation of this test.

Interpretation

Elevated glucagon concentrations in the absence of hypoglycemia may indicate the presence of a glucagon-secreting tumor. Successful treatment of a glucagon-secreting tumor is associated with normalization of glucagon levels.

 

Inappropriate elevations in glucagon concentrations in patients who are hyperglycemic and have type I diabetes indicate that paradoxical glucagon release may contribute to disease severity. This can be observed if insulin treatment is inadequate and patients are ketotic. However, glucagon measurement plays little, if any, role in the diagnostic workup of diabetic ketoacidosis.

 

In patients with diabetes, low glucagon concentrations (undetectable or in the lower quartile of the normal range) in the presence of hypoglycemia indicate impairment of hypoglycemic counter regulation. These patients may be particularly prone to recurrent hypoglycemia. This can be a permanent problem due to islet alpha-cell destruction or other, less well understood processes (eg, autonomous neuropathy). It can also be functional, most often due to over-tight blood glucose control and may be reversible after decreasing insulin doses.

Reject Due To

Gross hemolysis Reject
Gross lipemia Reject
Gross icterus Reject

Method Name

Enzyme-Linked Immunosorbent Assay (ELISA)

Forms

If not ordering electronically, complete, print, and send an Oncology Test Request (T729) with the specimen.

Secondary ID

9358